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Abstract: 

Road object tracking is an integral part of automotive 

radar technology. In this paper, an Interacting Multiple Model 

(IMM) filter with three different dynamic models, has been 

formulated as a part of automotive radar tracking algorithm for 

tracking both maneuvering and non-maneuvering road objects. It 

has been shown that, this multiple model based tracking outperforms 

single filter based models, in all on-road traffic scenarios.   

Key words—Radar tracking, Radar measurements, advanced driver 

assistance systems. 

 

1.    INTRODUCTION 

  In the modern day world of road fatalities 

Continental’s radar is one of the world leaders in using 

automotive radar technology to save lives. Our ultimate goal is 

to ensure zero road fatality a reality and to achieve this, road 

object tracking (both maneuvering and non-maneuvering) plays 

a significant role in automotive tracking. 

Road object tracking systems are one of the main 

fields of interest in the world of Intelligent Transport Systems 

by automotive radar. The key to successful target tracking lies 

in the optimal extraction of useful information about the target’s 

state from the limited and noisy measurements obtained by 

automotive radar. Most tracking systems employ a single filter 

model to track maneuvering and non- maneuvering targets. But, 

single model based trackers do not perform well because model 

is often not matched to the target motion dynamics. In this 

context, multiple filter models enable a tracking system to 

better match changing target dynamics and thus overall tracking 

performance improves significantly for various on-road traffic 

scenarios.  

Various mathematical models of target motion have been 

developed over the past three decades. For example – CV 

(Constant Velocity Model), CA (Constant Acceleration  

Model), CT (Coordinated Turn Rate Model), CTRV (Constant 

Turn Rate and Velocity Model), CTRA (Constant Turn Rate 

and Acceleration Model). These single filter models work well 

to track on road vehicles under specific scenarios e.g.  CV 

model performs well when the target vehicle moves with 

constant velocity, but its performance starts to degrade as soon 

as the target vehicle accelerates or takes turn (in those cases CA 

and CT model performs well respectively). In this paper, an 

Interacting Multiple Model (IMM) filter has been formulated 

for automotive radar tracking. IMM filter uses CV, CA and 

CTRV based target dynamics to model and estimate the entire 

vehicle trajectory. 

2.   SYSTEM MODEL 

Linear Kalman Filter (KF) is used for time update and 

measurement update of CV-CV and CA-CV. For non-linear 

system (such as CTRV, CTRA models), we use Extended 

Kalman Filter (EKF) which approximates the posterior density 

as Gaussian by first order Taylor series linearization of 

nonlinear state transition and measurement function. The 

details of linear kalman filter and EKF can be found in [1].  

 
2.1   Time Update or Predict: 

We linearize state model about estimated state at k-1(compute 

Jacobean) [1]  
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2.2    Measurement Update: 

We linearize measurement model about predicted state at k-1 

(compute Jacobean) 
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The detailed algorithm can be found in [1].     

EKF gives first order linearization of mean and 

covariance of the non-linear system. EKF is used time update 

and measurement update of CTRV model which is described 

later. 

 

3.   VEHICLE DYNAMIC MODEL 

 

3.1.   Constant Velocity (CV) Model: 

The motion of a target vehicle can usually be modeled 

as moving by constant speed in straight. This is known as 

constant velocity (CV) model. For this model, the states under 
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consideration are: [x, ẋ, y, ẏ] where y corresponds to the lateral 

component, x corresponds to the longitudinal component, ẋ 

corresponds to velocity in x-direction, ẏ corresponds to velocity 

in y-direction. This model will yield the best estimates of 

position and velocity on non-maneuvering targets. We consider 

CV model for both lateral and longitudinal directions. For this 

model (which is actually CV-CV), state transition matrix 

CVF = 
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Where, dT is the radar cycle time.  

By CV-CV we mean, CV model is used in both x and y position 

estimates i.e. for both lateral and longitudinal directions. 

The process noise covariance matrix Q of CV-CV filter is given 

by, 
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Where  and  are power spectral density (PSD) of process 

noise and they are used for tuning. 

 

3.2.   Constant Acceleration (CA) Model: 

The motion of a target vehicle can usually be modeled as moving 

with acceleration in straight. This is known as constant velocity 

(CA) model. For this model, the states under consideration are: 

[x, ẋ, ẍ, y, ẏ] where ẍ corresponds to acceleration in x-direction. 

We consider CV model for lateral direction and CA model for 

longitudinal direction.  For this model (which is actually CA-

CV), state transition matrix is given by, 
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The process noise covariance matrix Q of CA-CV filter is given by, 

𝑄𝐶𝐴 = 
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By CA-CV we mean, CA model is used in both x-position 

estimates (i.e. in lateral direction) and CV model is used in both 

y-position estimates (i.e. in longitudinal direction). 

 
3.3.   Constant Turn (CT) Model: 
The motion of a vehicle can usually be modeled as moving by 

circle segments. This is coordinated/constant turn model and it 

is a non-linear model. For this model, the states under 

consideration are: [x, ẋ, y, ẏ, ω] where ω corresponds to turn 

rate. For this model state transition matrix, 
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The process noise covariance matrix Q of CTRV filter is given 

by, 

      𝑄𝐶𝑇  = 
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Where 
2

err
  is the initial error in turn rate. This model assumes 

that the turn rate is known or could be estimated. When the 

range rate measurements are available, the turn rate could be 

estimated by using range rate measurements (i.e. radial 

velocity) [2], [ 3]. 

 

4.   MEASUREMENT MODEL 

In automotive radar, we get radar measurements of range, 

azimuth angels and radial velocity and their corresponding 

variances. We do not get the x-positions and y-positions 

directly. We convert these range, azimuth measurements from 

polar co-ordinate to Cartesian co-ordinate.  

After this co-ordinate transformation, we get the 

measurements as follows: 

   
xm xx   
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ym yy   

rm rr    

x  = actual/true x-position of the target vehicle (relative to the 

ego vehicle)  

y = actual/true y-position of the target vehicle (relative to the 

ego vehicle)  

r = actual/true radial velocity and it’s given by 

22 yx

yyxx
r
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ryx  ,,  = noise on x-position, y-position and radial velocity 

respectively. The measurement noise is assumed to white 

Gaussian as follows: 

   
x ~ ),0( 2

xN   and ),0(~ 2

yy N  . 

𝑥𝑚 = measured x-position of the target vehicle (relative to the 

ego vehicle)  

𝑦𝑚 = measured y-position of the target vehicle (relative to the 

ego vehicle)  

m
r = measured radial velocity. 

The variance of the x, y measurements
2[ x , ]2

y are 

indirectly obtained through range and azimuth measurement 

and their errors. Accordingly, the measurement covariance 

matrix R is calculated as follows: 
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Where,  
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33R = variance of radial velocity and it is obtained directly as 

radar measurement. Here we neglect the co-relation between 

radial velocity measurement and x-y measurements. 

 

The CV, CA and CT tracker use the measurements 

kmmk ryxz ],,[  as inputs to it at time instant k and estimate 

the states (i.e. x-positions and y-positions). The final state 

estimate 1]ˆ,ˆ[ kyx  is obtained by weighted fusion of state 

estimates of the three models. This is described in details, in the 

next section. 

 

 

5.   IMM TRACKER DESCRIPTION 
The performance of a tracking system is governed by the 

performance of the state estimation algorithm employed. 

Accurate state estimation of targets in a tracking system is 

required for reliable data association and correlation. The states 

to be estimated are typically the kinematic quantities of 

position, velocity, and acceleration. Filters are used on 

measurements to reduce the uncertainty due to noise on the 

observation and to estimate quantities that are not directly 

observed. State estimation often require multiple filter models 

to account for varying target behaviors. IMM uses two or more 

Kalman filters which run in parallel, each using a different 

model for target motion or errors. The IMM forms an optimal 

weighted sum of the output of all the filters and is able to rapidly 

adjust to target maneuvers. IMM considers all possible 

dynamics together – e.g. straight line motion, turn and motion 

with acceleration.  

In our case, IMM combines state hypotheses from 

three dynamic models – CV, CA and CTRV. It automatically 

switches between different possible dynamics (e.g. CV to 

CTRV, or CTRV to CA etc) and gives prediction with high 

accuracy. In our case, IMM is a method for combining state 

hypotheses from three dynamic models – CV-CV, CA-CV and 

CTRV as shown in Figure 1. The entire algorithm is based on 

probabilistic homogeneous Markov chain. The individual 

filters switch among themselves based on their individual mode 

probabilities and the final fused state is estimated by weighting 

individual states from each model as shown in Figure 2. 

 

 
Figure -1: The Interacting Multiple Model (IMM): Basic processing blocks 

and Estimation Algorithm 

 

 

The details of the IMM algorithm can be found in [4], [5] and 

[6]. One cycle IMM estimator steps are shown below in [7]. 

6.   SIMULATION RESULTS 
We have considered various test cases and compared the 

performance of single trackers (xy-coupled, xy-uncoupled, xy-

separated, CTRV and CTRA where, xy-coupled, xy-uncoupled, 

xy-separated are special cases of CV-CV or CA-CV model) 

versus IMM tracker, for different target trajectories using fairly 

large number of Monte Carlo runs. Then we have plotted the 

RMS error of the estimates of the x-positions and y-positions 

for all the filters together in a single plot. 
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Figure -2: The Interacting Multiple Model (IMM): Mixing and Fused State Estimate 

 

6.1.   Ego Fixed, Target Vehicle – Sinusoidal manuever: 

In this case, we consider that ego vehicle (the vehicle on 

which the radar is mounted) is stationary and a target vehicle is 

moving in sinusoidal path inside the FOV (field-of-view) of the 

ego vehicle. The scenario is given in Figure 3 where the ego 

vehicle is assumed to be stationary at co-ordinate (0, 0). The 

RMS (root mean squared) error plots are given in Figure 4. 

 

 
Figure -3: Improved tracking performance by IMM tracker (with three dynamic 
models – CV, CA, CTRV) compared to single CTRV model based tracker. 

 

From Figure-4, we observe that, the RMS errors of 

estimated x-position and y-position for single trackers (e.g. xy-

coupled, xy-uncoupled, xy-separated) can be as high as 1 meter 

and it clearly indicates track-loss by single trackers. The RMS 

error of IMM tracker is marginally less (in the range of 

approximately 2-4 cm) compared to all other single trackers. 

Thus IMM tracker provides improved tracking performance. 

 

6.2.   Ego moving, Target Vehicle – semi-circular manuever: 

In this case, we consider that ego vehicle is moving with 

constant velocity and a target vehicle is moving in semi-circular 

path inside the field-of-view of the ego vehicle. The scenario 

and the RMS error plots are given in Figure 5 and Figure 6 

respectively. In Figure-5, the FOV is shifting towards x-

direction because of the longitudinal ego motion. 

 

 
Figure -4: RMS Error (in m) of estimated x-position and estimated y-position 

 

 
Figure -5: Trajectories of ego vehicle and target vehicle (in absolute frame) 
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From Figure 6, we observe that, estimation error in IMM less 

than that of single trackers. 

 

 
Figure -6: RMS Error (in m) of estimated x-position and estimated y-position 

 

6.3.   Ego stationary, Target Vehicle – U-turn: 

In this case, we consider that Ego vehicle is stationary and 

a target vehicle is taking a U-turn inside the field-of-view of the 

ego vehicle. The scenario and the RMS error plots are given in 

Figure 7 and Figure 8 respectively. 

 

Figure -7: Trajectories of ego vehicle and target vehicle (in absolute frame) 

 

 
Figure -8: RMS Error (in m) of estimated x-position and estimated y-position 

 

From Figure-8, we observe that, the RMS error of x-y position 

estimate of IMM tracker is around 1-5 cm, which is quite good 

and reasonable. But, for single trackers it’s can be as high as 0.6 

meter, which indicates very poor performance by single 

trackers.  

CONCLUSION 

 In this paper, we have shown that we need switch from 

traditional single trackers to multiple tracker models to improve 

overall tracking performance, especially for turning and 

changing maneuver. We have also shown that interacting 

multiple model or IMM tracker (under Extended Kalman Filter-

EKF set-up) which internally switches between three dynamic 

models (namely, CV, CA and CTRV) as per probabilistic 

Markov Chain, has superior performance than any standard 

single tracker, in all real-life traffic scenarios. 
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